• DocumentCode
    1222131
  • Title

    A Current-Zero Arc Model Based on Forced Convection

  • Author

    Fang, M.T.C. ; Brannen, D.

  • Volume
    7
  • Issue
    4
  • fYear
    1979
  • Firstpage
    217
  • Lastpage
    229
  • Abstract
    A simplified arc model based on the integral method is used to study the arc behavior in a supersonic nozzle. Emphasis is placed on the energy balance of the overall arc, which extends to the arc thennal boundary. Similarity rules for aerodynamic and electrical quantities are established, and a quantitative definition of current zero period is given. Computations have been done for two nozzle geometries. The nozzle geometry plays the role of shaping the arc, thereby affecting the axial electric field distribution. Performance curves in terms of the critical rate of rise of recovery voltage (rrrv)c and di/dt at current zero are established. It has been found that (rrrv)c can be seriously affected by the distortion of the current waveform near current zero due to arc-circuit interaction. When experimentally measured current waveform is used as an input, a good quantitative agreement is obtained for the Liverpool orifice arc [1] between theory and experimental results. A satisfactory agreement has also been achieved for the axial electric field distribution without adding a turbulence term into the energy equation. The limitations of the present arc model is also discussed in detail.
  • Keywords
    Aerodynamics; Circuit breakers; Circuit testing; Computational geometry; Distortion measurement; Integral equations; Nonlinear distortion; Plasma temperature; Predictive models; Voltage;
  • fLanguage
    English
  • Journal_Title
    Plasma Science, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0093-3813
  • Type

    jour

  • DOI
    10.1109/TPS.1979.4317240
  • Filename
    4317240