Title :
Digital Computation of Linear Canonical Transforms
Author :
Koç, Aykut ; Ozaktas, Haldun M. ; Candan, Cagatay ; Kutay, M. Alper
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., Stanford, CA
fDate :
6/1/2008 12:00:00 AM
Abstract :
We deal with the problem of efficient and accurate digital computation of the samples of the linear canonical transform (LCT) of a function, from the samples of the original function. Two approaches are presented and compared. The first is based on decomposition of the LCT into chirp multiplication, Fourier transformation, and scaling operations. The second is based on decomposition of the LCT into a fractional Fourier transform followed by scaling and chirp multiplication. Both algorithms take ~ N log N time, where N is the time-bandwidth product of the signals. The only essential deviation from exactness arises from the approximation of a continuous Fourier transform with the discrete Fourier transform. Thus, the algorithms compute LCTs with a performance similar to that of the fast Fourier transform algorithm in computing the Fourier transform, both in terms of speed and accuracy.
Keywords :
Fourier transforms; Wigner distribution; continuous Fourier transform; digital computation; discrete Fourier transform; fast Fourier transform algorithm; linear canonical transforms; Approximation algorithms; Chirp; Convolution; Discrete Fourier transforms; Fast Fourier transforms; Fourier transforms; Helium; Sampling methods; Signal processing algorithms; Time frequency analysis; Diffraction integrals; Wigner distributions; fractional Fourier transform (FRT); linear canonical transform (LCT); time-frequency analysis;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2007.912890