Title :
Kernel Eigenspace Separation Transform for Subspace Anomaly Detection in Hyperspectral Imagery
Author :
Goldberg, H. ; Kwon, H. ; Nasrabadi, N.M.
Author_Institution :
U.S. Army Res. Lab., Adelphi
Abstract :
This letter proposes a nonlinear version of the eigenspace separation transform (EST) for subspace anomaly detection in hyperspectral imaging. The EST is defined in terms of the eigenvectors of the difference correlation matrix (DCOR) obtained using the data from the two classes. Using ideas found in the machine learning literature (i.e., the kernel trick), a nonlinear version-kernel EST (KEST)-is achieved by expressing the DCOR in terms of dot products in feature space and replacing all dot products with a Mercer kernel function that is defined in terms of input data space. Experimental results indicate that KEST outperforms many other commonly used subspace anomaly detection algorithms.
Keywords :
eigenvalues and eigenfunctions; feature extraction; image classification; remote sensing; DCOR; EST; Mercer kernel function; difference correlation matrix; eigenvectors; feature space; hyperspectral imaging; input data space; kernel eigenspace separation transform; kernel trick; subspace anomaly detection algorithms; Covariance matrix; Data mining; Detection algorithms; Feature extraction; Hyperspectral imaging; Kernel; Machine learning; Pixel; Principal component analysis; Testing; Anomaly detection; eigenspace separation transform (EST); hyperspectral imagery; kernel-based machine learning; kernels;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2007.903083