Title :
Intervention in Gene Regulatory Networks via a Stationary Mean-First-Passage-Time Control Policy
Author :
Vahedi, Golnaz ; Faryabi, Babak ; Chamberland, Jean-Francois ; Datta, Aniruddha ; Dougherty, Edward R.
Author_Institution :
Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX
Abstract :
A prime objective of modeling genetic regulatory networks is the identification of potential targets for therapeutic intervention. To date, optimal stochastic intervention has been studied in the context of probabilistic Boolean networks, with the control policy based on the transition probability matrix of the associated Markov chain and dynamic programming used to find optimal control policies. Dynamical programming algorithms are problematic owing to their high computational complexity. Two additional computationally burdensome issues that arise are the potential for controlling the network and identifying the best gene for intervention. This paper proposes an algorithm based on mean first-passage time that assigns a stationary control policy for each gene candidate. It serves as an approximation to an optimal control policy and, owing to its reduced computational complexity, can be used to predict the best control gene. Once the best control gene is identified, one can derive an optimal policy or simply utilize the approximate policy for this gene when the network size precludes a direct application of dynamic programming algorithms. A salient point is that the proposed algorithm can be model-free. It can be directly designed from time-course data without having to infer the transition probability matrix of the network.
Keywords :
Boolean algebra; Markov processes; computational complexity; dynamic programming; genetics; matrix algebra; molecular biophysics; patient treatment; Markov chain; computational complexity; dynamic programming; dynamical programming algorithm; gene regulatory networks; optimal stochastic intervention; probabilistic Boolean networks; stationary mean-first-passage-time control policy; therapeutic intervention; transition probability matrix; Cancer; Computational complexity; Computer networks; Controllability; Dynamic programming; Genetics; Heuristic algorithms; Metastasis; Optimal control; Size control; Stochastic processes; USA Councils; Dynamic Programming; Dynamic programming; Genetic Regulatory Networks; Mean First-Passage Time; Probabilistic Boolean Networks; Stochastic Optimal Control; genetic regulatory networks; mean first-passage time; probabilistic Boolean networks; stochastic optimal control; Animals; Computational Biology; Cybernetics; Gene Expression Regulation; Gene Regulatory Networks; Genetic Engineering; Humans; Likelihood Functions; Markov Chains; Melanoma; Models, Genetic; Odds Ratio; Reference Values; Research Design; Time Factors;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2008.925677