DocumentCode :
1224241
Title :
A Rapid and Automatic MRF-Based Clustering Method for SAR Images
Author :
Xia, Gui-Song ; He, Chu ; Sun, Hong
Author_Institution :
Wuhan Univ., Wuhan
Volume :
4
Issue :
4
fYear :
2007
Firstpage :
596
Lastpage :
600
Abstract :
This letter presents a precise and rapid clustering method for synthetic aperture radar (SAR) images by embedding a Markov random field (MRF) model in the clustering space and using graph cuts (GCs) to search the optimal clusters for the data. The proposed method is optimal in the sense of maximum a posteriori (MAP). It automatically works in a two-loop way: an outer loop and an inner loop. The outer loop determines the cluster number using a pseudolikelihood information criterion based on MRF modeling, and the inner loop is designed in a ldquohardrdquo membership expectation-maximization (EM) style: in the E step, with fixed parameters, the optimal data clusters are rapidly searched under the criterion of MAP by the GC; and in the M step, the parameters are estimated using current data clusters as ldquohardrdquo membership obtained in the E step. The two steps are iterated until the inner loop converges. Experiments on both simulated and real SAR images test the performance of the algorithm.
Keywords :
Markov processes; expectation-maximisation algorithm; geophysical signal processing; geophysical techniques; graph theory; radar imaging; remote sensing by radar; synthetic aperture radar; Markov random field model; SAR image clustering; expectation-maximization method; graph cuts; maximum a posteriori; pseudolikelihood information criterion; synthetic aperture radar; Clustering algorithms; Clustering methods; Embedded computing; Helium; Image converters; Image segmentation; Markov random fields; Parameter estimation; Signal processing algorithms; Synthetic aperture radar; Graph cuts (GCs); Markov random field (MRF) model; image clustering; synthetic aperture radar (SAR);
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2007.903065
Filename :
4317553
Link To Document :
بازگشت