DocumentCode :
1225173
Title :
Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink bound
Author :
Xing, Chaoping
Author_Institution :
Dept. of Math., Nat. Univ. of Singapore, Anhui, China
Volume :
49
Issue :
7
fYear :
2003
fDate :
7/1/2003 12:00:00 AM
Firstpage :
1653
Lastpage :
1657
Abstract :
In the present paper, we construct a class of nonlinear codes by making use of higher order derivatives of certain functions of algebraic curves. It turns out that the asymptotic bound derived from the Goppa geometry codes can be improved for the entire interval (0,1). In particular, the Tsfasman-Vladut-Zink (TVZ) bound is ameliorated for the entire interval (0,1).
Keywords :
Goppa codes; geometric codes; nonlinear codes; Goppa geometry codes; Tsfasman-Vladut-Zink bound; algebraic curves; asymptotic bound; higher order derivatives; nonlinear codes; Chaos; Entropy; Galois fields; Geometry; Linear code; Mathematics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.813559
Filename :
1207366
Link To Document :
بازگشت