Title :
Adaptive IIR filtering algorithms for system identification: a general framework
Author :
Netto, Sergio L. ; Diniz, Paulo S R ; Agathoklis, Panajotis
Author_Institution :
COPPE, Univ. Federal do Rio de Janeiro, Brazil
fDate :
2/1/1995 12:00:00 AM
Abstract :
Adaptive IIR (infinite impulse response) filters are particularly beneficial in modeling real systems because they require lower computational complexity and can model sharp resonances more efficiently as compared to the FIR (finite impulse response) counterparts. Unfortunately, a number of drawbacks are associated with adaptive IIR filtering algorithms that have prevented their widespread use, such as: convergence to biased or local minimum solutions; requirement of stability monitoring; and slow convergence. Most of the recent research effort on this field is aimed at overcoming some of the above mentioned drawbacks. In this paper, a number of known adaptive IIR filtering algorithms are presented using a unifying framework that is useful to interrelate the algorithms and to derive their properties. Special attention is given to issues such as the motivation to derive each algorithm and the properties of the solution after convergence. Several computer simulations are included in order to verify the predicted performance of the algorithms
Keywords :
IIR filters; adaptive filters; adaptive signal processing; convergence of numerical methods; digital simulation; electrical engineering computing; filtering theory; identification; adaptive IIR filtering algorithms; computational complexity; computer simulation; convergence; performance; sharp resonances; stability monitoring; system identification; unifying framework; Adaptive filters; Computational complexity; Computer simulation; Filtering algorithms; Finite impulse response filter; IIR filters; Monitoring; Resonance; Stability; System identification;
Journal_Title :
Education, IEEE Transactions on