DocumentCode :
1229632
Title :
On Asymptotic Normality of Nonlinear Least Squares for Sinusoidal Parameter Estimation
Author :
Li, Ta-Hsin ; Song, Kai-Sheng
Author_Institution :
IBM T. J. Watson Res. Center, Yorktown Heights, NY
Volume :
56
Issue :
9
fYear :
2008
Firstpage :
4511
Lastpage :
4515
Abstract :
This correspondence revisits the asymptotic normality question of the nonlinear least-squares estimator for sinusoidal parameter estimation and fills a gap in the literature by providing a complete proof of the asymptotic normality under the assumption of additive non-Gaussian white noise. The result shows that the nonlinear least-squares estimator is able to asymptotically attain the Cramer-Rao lower bound derived under the Gaussian white noise assumption in situations where the actual noise distribution is non-Gaussian.
Keywords :
least mean squares methods; parameter estimation; spectral analysis; Cramer-Rao lower bound; additive nonGaussian white noise; asymptotic normality; nonlinear least squares; sinusoidal parameter estimation; Frequency estimation; impulsive noise; maximum-likelihood estimation; non-Gaussian noise; nonlinear estimation; spectral analysis;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2008.925966
Filename :
4527197
Link To Document :
بازگشت