Title : 
On Asymptotic Normality of Nonlinear Least Squares for Sinusoidal Parameter Estimation
         
        
            Author : 
Li, Ta-Hsin ; Song, Kai-Sheng
         
        
            Author_Institution : 
IBM T. J. Watson Res. Center, Yorktown Heights, NY
         
        
        
        
        
        
        
            Abstract : 
This correspondence revisits the asymptotic normality question of the nonlinear least-squares estimator for sinusoidal parameter estimation and fills a gap in the literature by providing a complete proof of the asymptotic normality under the assumption of additive non-Gaussian white noise. The result shows that the nonlinear least-squares estimator is able to asymptotically attain the Cramer-Rao lower bound derived under the Gaussian white noise assumption in situations where the actual noise distribution is non-Gaussian.
         
        
            Keywords : 
least mean squares methods; parameter estimation; spectral analysis; Cramer-Rao lower bound; additive nonGaussian white noise; asymptotic normality; nonlinear least squares; sinusoidal parameter estimation; Frequency estimation; impulsive noise; maximum-likelihood estimation; non-Gaussian noise; nonlinear estimation; spectral analysis;
         
        
        
            Journal_Title : 
Signal Processing, IEEE Transactions on
         
        
        
        
        
            DOI : 
10.1109/TSP.2008.925966