Title :
Limiting error propagation in Viterbi decoding of convolutional codes
Author :
Leonard, D.A. ; Rodger, C.A.
Author_Institution :
Dept. of Algebra, Combinatorics, & Anal., Auburn Univ., AL, USA
fDate :
11/1/1989 12:00:00 AM
Abstract :
The problem of avoiding infinite error propagation in noncatastrophic convolutional codes when using a truncated Viterbi decoder is considered. A truncation length τ is defined in terms of walks in the state diagram. The truncation length guarantees that, in the presence of a sufficiently long guard space, a truncated Viterbi decoder will always recover from any error event. This value of τ is the theoretically smallest possible truncation length
Keywords :
coding errors; decoding; error correction codes; Viterbi decoding; convolutional codes; error propagation; noncatastrophic code; state diagram; truncation length; Algebra; Convolutional codes; Decoding; Error correction; Error correction codes; NASA; Reed-Solomon codes; Space missions; Upper bound; Viterbi algorithm;
Journal_Title :
Information Theory, IEEE Transactions on