DocumentCode :
1230324
Title :
Limiting error propagation in Viterbi decoding of convolutional codes
Author :
Leonard, D.A. ; Rodger, C.A.
Author_Institution :
Dept. of Algebra, Combinatorics, & Anal., Auburn Univ., AL, USA
Volume :
35
Issue :
6
fYear :
1989
fDate :
11/1/1989 12:00:00 AM
Firstpage :
1295
Lastpage :
1299
Abstract :
The problem of avoiding infinite error propagation in noncatastrophic convolutional codes when using a truncated Viterbi decoder is considered. A truncation length τ is defined in terms of walks in the state diagram. The truncation length guarantees that, in the presence of a sufficiently long guard space, a truncated Viterbi decoder will always recover from any error event. This value of τ is the theoretically smallest possible truncation length
Keywords :
coding errors; decoding; error correction codes; Viterbi decoding; convolutional codes; error propagation; noncatastrophic code; state diagram; truncation length; Algebra; Convolutional codes; Decoding; Error correction; Error correction codes; NASA; Reed-Solomon codes; Space missions; Upper bound; Viterbi algorithm;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.45286
Filename :
45286
Link To Document :
بازگشت