Title :
The Cramer-Rao bound on frequency estimates of signals closely spaced in frequency
Author_Institution :
Atlantic Aerosp. Electron. Corp., Waltham, MA, USA
fDate :
6/1/1992 12:00:00 AM
Abstract :
This paper examines the Cramer-Rao (CR) lower bound on the variance of frequency estimates for the problem of n signals closely spaced in frequency. The main results presented are simple analytic expressions for the CR bound in terms of the maximum frequency separation, δω, SNR, and the number of data vectors, N, that are valid for small δω. The results are applicable to the conditional (deterministic) signal model. The results show that the CR bound on frequency estimates is proportional to (δω)-2(n-1)/N×SNR. Therefore, the bound increases rapidly as the signal separation is reduced. Examples indicate that the expressions closely approximate the exact CR bounds whenever the signal separation is smaller than one resolution cell. Based upon the results, it is argued that the threshold SNR at which an unbiased estimator can resolve n closely spaced signals is at least proportional to (δω)-2n/N. The results are quite general and apply to many different types of temporal and spatial sampling grids
Keywords :
parameter estimation; spectral analysis; Cramer-Rao bound; analytic expressions; frequency estimates; maximum frequency separation; resolution cell; signal separation; spatial sampling grids; spectral analysis; temporal sampling grids; threshold SNR; unbiased estimator; Chromium; Frequency estimation; Helium; Performance analysis; Sampling methods; Signal analysis; Signal resolution; Signal to noise ratio; Source separation; Spatial resolution;
Journal_Title :
Signal Processing, IEEE Transactions on