Title :
Predicting the performance and reliability of future field programmable gate arrays routing architectures with carbon nanotube bundle interconnect
Author :
Eachempati, S. ; Vijaykrishnan, N. ; Nieuwoudt, A. ; Massoud, Y.
Author_Institution :
Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA
fDate :
4/1/2009 12:00:00 AM
Abstract :
The authors investigate the performance and reliability of routing architectures in field programmable gate arrays (FPGA) that utilise bundles of single-walled carbon nanotubes (SWCNT) as wires in the FPGA interconnect fabric in future process technologies here. To leverage the performance advantages of nanotube-based interconnect, we explore several important aspects of the FPGA routing architecture including the wire length segmentation distribution and the switch/connection block configurations. The authors also investigate the impact of statistical variations in interconnect properties on FPGA timing yield. The results demonstrate that FPGAs utilising SWCNT bundle interconnect can achieve up to a 54% improvement in area-delay product over the best performing architecture with standard copper interconnect in 22%nm process technology. Furthermore, FPGAs implemented using SWCNT-based interconnect can provide a superior performance-yield trade-off of up to 43% over FPGAs implemented using traditional copper interconnect in future process technologies.
Keywords :
carbon nanotubes; field programmable gate arrays; integrated circuit interconnections; integrated circuit reliability; nanotube devices; network routing; C; FPGA interconnect fabric; FPGA timing yield; carbon nanotube bundle interconnect; field programmable gate arrays; single-walled carbon nanotubes; switch-connection block configurations; wire length segmentation distribution;
Journal_Title :
Circuits, Devices & Systems, IET
DOI :
10.1049/iet-cds.2008.0149