Title :
Analysis of surface roughness and morphology of first-year sea ice melt ponds: implications for microwave scattering
Author :
Scharien, Randall K. ; Yackel, John J.
Author_Institution :
Dept. of Geogr., Univ. of Calgary, Alta., Canada
Abstract :
Variations in wind forcing over summer first-year sea ice (FYI) melt ponds occur at hourly to weekly scales and are a significant contributor to microwave backscatter (σ°) variability observed from spaceborne synthetic aperture radar (SAR) platforms (e.g., ENVISAT-ASAR and RADARSAT-1). This variability impairs our ability to use SAR to derive information on summer sea ice thermodynamic state and energy balance parameters such as albedo and melt pond fraction. The surface roughness contribution of FYI melt ponds in the Canadian Arctic Archipelago to like-polarized, C-band σ° estimates is analyzed through a spectral and statistical analysis of surface wave height profiles for varying wind speeds, upwind fetch lengths, and melt pond depths. A unique derivation of melt pond surface wave height spectra is presented based on digital video of melt pond surface wave trains. Significant scale surface roughness was observed even at wind speeds of 3 m·s-1, resulting in small perturbation model estimates of σ° (HH) ranging from -5 dB at 20° incidence to -22 dB at 50° incidence. Results from a multivariate linear regression analysis show that 53.5% of observed variance in σ° (HH or VV) can be explained by wind speed, upwind fetch from melt pond edges, and melt pond depth, with no appreciable difference in the relative contribution of explanatory variables. Modeled omnidirectional σ° as a function of wind speed and incidence angle for 100-m transects collected throughout the melt pond season act to elaborate the role of fetch and depth, as well as the modulating effect of hummocks, on σ°.
Keywords :
backscatter; microwave measurement; ocean waves; oceanographic regions; oceanographic techniques; regression analysis; remote sensing by radar; sea ice; spaceborne radar; spectral analysis; surface roughness; synthetic aperture radar; wind; Arctic Ocean; Canadian Arctic Archipelago; ENVISAT-ASAR; RADARSAT-1; albedo; first-year sea ice melt ponds; melt pond fraction; microwave scattering; multivariate linear regression analysis; sea ice energy balance; sea ice thermodynamic state; spaceborne synthetic aperture radar; spectral analysis; statistical analysis; surface morphology; surface roughness; surface wave height; wind forcing; wind speed; Ice surface; Ocean temperature; Rough surfaces; Scattering; Sea ice; Sea surface; Surface morphology; Surface roughness; Surface waves; Wind speed; First-year sea ice (FYI); melt ponds; microwave scattering;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2005.857896