Author_Institution :
Dept. of Math. Sci., Kent State Univ., Warren, OH
Abstract :
Codes over the ring of integers modulo 4 have been studied by many researchers. Negacyclic codes such that the length n of the code is odd have been characterized over the alphabet Zopf4, and furthermore, have been generalized to the case of the alphabet being a finite commutative chain ring. In this paper, we investigate negacyclic codes of length 2s over Galois rings. The structure of negacyclic codes of length 2s over the Galois rings GR(2a,m), as well as that of their duals, are completely obtained. The Hamming distances of negacyclic codes over GR(2a,m) in general, and over Zopf2 a in particular are studied. Among other more general results, the Hamming distances of all negacyclic codes over Zopf2 a of length 4,8, and 16 are given. The weight distributions of such negacyclic codes are also discussed
Keywords :
Galois fields; Hamming codes; cyclic codes; dual codes; Galois ring; Hamming distance; dual code; negacyclic code; Algebra; Character generation; Discrete Fourier transforms; Discrete transforms; Galois fields; Hamming weight; Helium; Linear code; Modules (abstract algebra); Parity check codes; Codes over finite rings; Galois rings; Hamming weights; dual codes; negacyclic codes;