DocumentCode :
1241493
Title :
A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis
Author :
Symeonidis, Panagiotis ; Nanopoulos, Alexandros ; Manolopoulos, Yannis
Author_Institution :
Dept. of Inf., Aristotle Univ., Thessaloniki, Greece
Volume :
22
Issue :
2
fYear :
2010
Firstpage :
179
Lastpage :
192
Abstract :
Social tagging is the process by which many users add metadata in the form of keywords, to annotate and categorize items (songs, pictures, Web links, products, etc.). Social tagging systems (STSs) can provide three different types of recommendations: They can recommend 1) tags to users, based on what tags other users have used for the same items, 2) items to users, based on tags they have in common with other similar users, and 3) users with common social interest, based on common tags on similar items. However, users may have different interests for an item, and items may have multiple facets. In contrast to the current recommendation algorithms, our approach develops a unified framework to model the three types of entities that exist in a social tagging system: users, items, and tags. These data are modeled by a 3-order tensor, on which multiway latent semantic analysis and dimensionality reduction is performed using both the higher order singular value decomposition (HOSVD) method and the kernel-SVD smoothing technique. We perform experimental comparison of the proposed method against state-of-the-art recommendation algorithms with two real data sets (Last.fm and BibSonomy). Our results show significant improvements in terms of effectiveness measured through recall/precision.
Keywords :
data analysis; meta data; recommender systems; singular value decomposition; social networking (online); tensors; 3-order tensor; dimensionality reduction; higher order singular value decomposition method; kernel-SVD smoothing technique; metadata; multiway latent semantic analysis; social tagging systems; state-of-the-art recommendation algorithms; ternary semantic analysis; HOSVD.; Social tags; recommender systems; tensors;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2009.85
Filename :
4815246
Link To Document :
بازگشت