DocumentCode :
1242346
Title :
Wavelet domain statistical hyperspectral soil texture classification
Author :
Zhang, Xudong ; Younan, Nicolas H. ; Hara, Charles G O
Author_Institution :
Dept. of Electr. & Comput. Eng., Mississippi State Univ., MS, USA
Volume :
43
Issue :
3
fYear :
2005
fDate :
3/1/2005 12:00:00 AM
Firstpage :
615
Lastpage :
618
Abstract :
This communication presents an automatic soil texture classification system using hyperspectral soil signatures and wavelet-based statistical models. Previous soil texture classification systems are closely related to texture classification methods, where images are used for training and testing. In this study, we develop a novel system using hyperspectral soil textures, which provide rich information and intrinsic properties about soil textures, where two wavelet-domain statistical models, namely, the maximum-likelihood and hidden Markov models, are incorporated for the classification task. Experimental results show that these methods are both reliable and robust.
Keywords :
geophysical signal processing; hidden Markov models; image classification; maximum likelihood estimation; multidimensional signal processing; soil; terrain mapping; automatic soil texture classification; hidden Markov models; hyperspectral soil signatures; image classification; maximum-likelihood classification; wavelet domain statistical hyperspectral soil texture classification; wavelet-based statistical models; Classification algorithms; Hidden Markov models; Hyperspectral imaging; Hyperspectral sensors; Reflectivity; Robustness; Soil texture; Surface structures; System testing; Wavelet domain;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2004.841476
Filename :
1396334
Link To Document :
بازگشت