Title :
A root-finding algorithm for list decoding of Reed-Muller codes
Author :
Wu, Xin-Wen ; Kuijper, Margreta ; Udaya, Parampalli
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Vic., Australia
fDate :
3/1/2005 12:00:00 AM
Abstract :
Let Fq[X1,...,Xm] denote the set of polynomials over Fq in m variables, and Fq[X1,...,Xm]≤u denote the subset that consists of the polynomials of total degree at most u. Let H(T) be a nontrivial polynomial in T with coefficients in Fq[X1,...,Xm]. A crucial step in interpolation-based list decoding of q-ary Reed-Muller (RM) codes is finding the roots of H(T) in Fq[X1,...,Xm]≤u. In this correspondence, we present an efficient root-finding algorithm, which finds all the roots of H(T) in Fq[X1,...,Xm]≤u. The algorithm can be used to speed up the list decoding of RM codes.
Keywords :
Reed-Muller codes; Reed-Solomon codes; decoding; polynomials; Reed-Muller codes; Reed-Solomon codes; list decoding; polynomials; root-finding algorithm; Decoding; Error correction codes; Galois fields; Linear code; Notice of Violation; Polynomials; Upper bound; Vectors; Reed–Solomon (RS) codes; list decoding; root-finding algorithm;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2004.842765