DocumentCode :
1245833
Title :
The KryptoKnight family of light-weight protocols for authentication and key distribution
Author :
Bird, Ray ; Gopal, Inder ; Herzberg, Amir ; Janson, Phil ; Kutten, Shay ; Molva, Refik ; Yung, Moti
Author_Institution :
IBM Corp., Research Triangle Park, NC, USA
Volume :
3
Issue :
1
fYear :
1995
fDate :
2/1/1995 12:00:00 AM
Firstpage :
31
Lastpage :
41
Abstract :
An essential function for achieving security in computer networks is reliable authentication of communicating parties and network components. Such authentication typically relies on exchanges of cryptographic messages between the involved parties, which in turn implies that these parties be able to acquire shared secret keys or certified public keys. Provision of authentication and key distribution functions in the primitive and resource-constrained environments of low-function networking mechanisms, portable, or wireless devices presents challenges in terms of resource usage, system management, ease of use, efficiency, and flexibility that are beyond the capabilities of previous designs such as Kerberos or X.509. This paper presents a family of light-weight authentication and key distribution protocols suitable for use in the low layers of network architectures. All the protocols are built around a common two-way authentication protocol. The paper argues that key distribution may require substantially different approaches in different network environments and shows that the proposed family of protocols offers a flexible palette of compatible solutions addressing many different networking scenarios. The mechanisms are minimal in cryptographic processing and message size, yet they are strong enough to meet the needs of secure key distribution for network entity authentication. The protocols presented have been implemented as part of comprehensive security subsystem prototype called KryptoKnight
Keywords :
computer networks; cryptography; message authentication; protocols; KryptoKnight; certified public keys; computer networks security; cryptographic messages; cryptographic processing; key distribution protocols; light-weight authentication protocols; message size; network architectures; networking mechanisms; portable devices; resource usage; shared secret keys; system management; two-way authentication protocol; wireless devices; Authentication; Computer network reliability; Computer security; Cryptographic protocols; Distribution functions; Environmental management; Public key; Public key cryptography; Resource management; Telecommunication network reliability;
fLanguage :
English
Journal_Title :
Networking, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1063-6692
Type :
jour
DOI :
10.1109/90.365435
Filename :
365435
Link To Document :
بازگشت