Title :
Computer simulation of epicardial potentials using a heart-torso model with realistic geometry
Author :
Weixue, Lu ; Ling, Xia
Author_Institution :
Inst. of Biomed. Eng., Zhejiang Univ., Hangzhou, China
Abstract :
Previous cardiac simulation studies have focused on simulating the activation isochrones and subsequently the body surface potentials. Epicardial potentials, which are important for clinical application as well as for electrocardiographic inverse problem studies, however, have usually been neglected. This paper describes a procedure of simulating epicardial potentials using a microcomputer-based heart-torso model with realistic geometry. The authors´ heart model developed earlier is composed of approximately 65000 cell units which are arranged in a cubic close-packed structure. An action potential waveform with variable in duration is assigned to each unit. The heart model, together with the epicardial surface model constructed recently, are mounted in an inhomogeneous human torso model. Electric dipoles, which are proportional to the spatial gradient of the action potential, are generated in all the cell units. These dipoles give rise to a potential distribution on the epicardial surface, which is calculated by means of the boundary element method. The simulated epicardial potential maps during a normal heart beat and in a preexcited beat to mimic Wolff-Parkinson-White (WPW) syndrome are in close agreement with those reported in the literature.
Keywords :
digital simulation; electrocardiography; medical diagnostic computing; microcomputer applications; physiological models; Wolff-Parkinson-White syndrome; action potential waveform; boundary element method; computer simulation; cubic close-packed structure; electric dipoles; electrocardiographic inverse problem studies; epicardial potentials; epicardial surface model; inhomogeneous human torso model; microcomputer-based heart-torso model; normal heart beat; preexcited beat; realistic geometry; Application software; Biological system modeling; Computational geometry; Computational modeling; Computer simulation; Heart; Humans; Inverse problems; Solid modeling; Torso; Action Potentials; Body Surface Potential Mapping; Computer Simulation; Electrocardiography; Heart; Humans; Membrane Potentials; Microcomputers; Models, Biological; Models, Neurological; Purkinje Fibers; Radiography, Thoracic; Thorax; Tomography, X-Ray Computed; Wolff-Parkinson-White Syndrome;
Journal_Title :
Biomedical Engineering, IEEE Transactions on