DocumentCode :
1246486
Title :
Enlargement or reduction of digital images with minimum loss of information
Author :
Unser, Michael ; Aldroubi, Akram ; Eden, Murray
Author_Institution :
Nat. Center for Res. Resources, Nat. Inst. of Health, Bethesda, MD, USA
Volume :
4
Issue :
3
fYear :
1995
fDate :
3/1/1995 12:00:00 AM
Firstpage :
247
Lastpage :
258
Abstract :
The purpose of this paper is to derive optimal spline algorithms for the enlargement or reduction of digital images by arbitrary (noninteger) scaling factors. In our formulation, the original and rescaled signals are each represented by an interpolating polynomial spline of degree n with step size one and Δ, respectively. The change of scale is achieved by determining the spline with step size Δ that provides the closest approximation of the original signal in the L2-norm. We show that this approximation can be computed in three steps: (i) a digital prefilter that provides the B-spline coefficients of the input signal, (ii) a resampling using an expansion formula with a modified sampling kernel that depends explicitly on Δ, and (iii) a digital postfilter that maps the result back into the signal domain. We provide explicit formulas for n=0, 1, and 3 and propose solutions for the efficient implementation of these algorithms. We consider image processing examples and show that the present method compares favorably with standard interpolation techniques. Finally, we discuss some properties of this approach and its connection with the classical technique of bandlimiting a signal, which provides the asymptotic limit of our algorithm as the order of the spline tends to infinity
Keywords :
digital filters; image processing; image sampling; interpolation; polynomials; splines (mathematics); B-spline coefficients; L2-norm; asymptotic limit; bandlimiting; digital images; digital postfilter; digital prefilter; expansion formula; image enlargement; image processing; image reduction; information loss; interpolating polynomial spline; modified sampling kernel; optimal spline algorithms; resampling; scaling factors; signal domain; Approximation error; Digital images; Image processing; Image sampling; Interpolation; Kernel; Least squares approximation; Polynomials; Signal sampling; Spline;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.366474
Filename :
366474
Link To Document :
بازگشت