DocumentCode :
1246724
Title :
Very-high-speed silicon bipolar transistors with in-situ doped polysilicon emitter and rapid vapor-phase doping base
Author :
Uchino, Takashi ; Shiba, Takeo ; Kikuchi, Toshiyuki ; Tamaki, Yoichi ; Watanabe, Atsuo ; Kiyota, Yukihiro
Author_Institution :
Central Res. Lab., Hitachi Ltd., Kokubunji, Japan
Volume :
42
Issue :
3
fYear :
1995
fDate :
3/1/1995 12:00:00 AM
Firstpage :
406
Lastpage :
412
Abstract :
We present a detailed study of the performance of very-high-speed silicon bipolar transistors with ultra-shallow junctions formed by thermal diffusion. Devices are fabricated with double-polysilicon self-aligned bipolar technology with U-groove isolation on directly bonded SOI wafers to reduce the parasitic capacitances. Very thin and low resistivity bases are obtained by rapid vapor-phase doping (RVD), which is a vapor diffusion technique using a source gas of B2H6. Very shallow emitters are formed by in-situ phosphorus doped polysilicon (IDP) emitter technology with rapid thermal annealing (RTA). In IDP emitter technology, the emitters are formed by diffusion from the in-situ phosphorus doped amorphous silicon layer. Fabricated transistors are found to have ideal I-V characteristics, large current gain and low emitter resistance for a small emitter. Furthermore, a minimum ECL gate delay time of 15 ps is achieved using these key techniques. Analyses of the high performance using circuit and device simulations indicate that the most effective delay components of an ECL gate are cut-off frequency and base resistance. A high cut-off frequency is achieved by reducing the base width and active collector region. In this study, RVD is used to achieve both high cut-off frequency and low base resistance at the same time
Keywords :
bipolar transistors; rapid thermal annealing; semiconductor doping; silicon; thermal diffusion; 15 ps; ECL gate delay time; I-V characteristics; Si:B-Si:P; U-groove isolation; base resistance; circuit simulations; current gain; cut-off frequency; device simulations; directly bonded SOI wafers; double-polysilicon self-aligned bipolar technology; emitter resistance; in-situ phosphorus doped polysilicon emitter; parasitic capacitances; rapid thermal annealing; rapid vapor-phase doping base; thermal diffusion; ultra-shallow junctions; very-high-speed silicon bipolar transistors; Bipolar transistors; Conductivity; Cutoff frequency; Delay effects; Doping; Isolation technology; Parasitic capacitance; Rapid thermal annealing; Silicon; Wafer bonding;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/16.368036
Filename :
368036
Link To Document :
بازگشت