DocumentCode :
1252485
Title :
On the Laplace-Beltrami operator and brain surface flattening
Author :
Angenent, Sigurd ; Haker, Steven ; Tannenbaum, Allen ; Kikinis, Ron
Author_Institution :
Dept. of Math., Wisconsin Univ., Madison, WI, USA
Volume :
18
Issue :
8
fYear :
1999
Firstpage :
700
Lastpage :
711
Abstract :
In this paper, using certain conformal mappings from uniformization theory, the authors give an explicit method for flattening the brain surface in a way which preserves angles. From a triangulated surface representation of the cortex, the authors indicate how the procedure may be implemented using finite elements. Further, they show how the geometry of the brain surface may be studied using this approach.
Keywords :
biomedical MRI; brain models; finite element analysis; medical image processing; Laplace-Beltrami operator; MRI; brain surface flattening; conformal mappings; cortex; magnetic resonance imaging; medical diagnostic imaging; triangulated surface representation; uniformization theory; Brain; Conformal mapping; Data visualization; Finite element methods; Geometry; Image segmentation; Magnetic resonance imaging; Mathematics; Surface fitting; Topology; Brain; Humans; Image Processing, Computer-Assisted; Magnetic Resonance Imaging;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/42.796283
Filename :
796283
Link To Document :
بازگشت