DocumentCode :
1253421
Title :
Some new results on the minimum length of binary linear codes of dimension nine
Author :
Dodunekov, Stefan ; Guritman, Sugi ; Simonis, Juriaan
Author_Institution :
Inst. of Math. & Inf., Bulgarian Acad. of Sci., Sofia, Bulgaria
Volume :
45
Issue :
7
fYear :
1999
fDate :
11/1/1999 12:00:00 AM
Firstpage :
2543
Lastpage :
2546
Abstract :
Let n(k, d) be the smallest integer n for which a binary linear code of length n, dimension k, and minimum distance d exists. Using the residual code technique, the MacWilliams identities and the weight distribution of appropriate Reed-Muller codes, we prove that n(9, 64)=133, n(9, 120)⩾244, n(9, 124)=252, and n(9, 184)=371. We also show that puncturing a known [322, 9, 160]-code yields length-optimal codes with parameters [319, 9, 158], [315, 9, 156], and [312, 9, 154]
Keywords :
Reed-Muller codes; binary codes; linear codes; MacWilliams identities; Reed-Muller codes; binary linear codes; dimension nine codes; length-optimal codes; minimum distance; minimum length; puncturing; residual code technique; weight distribution; Character generation; Cryptography; Galois fields; Hamming distance; Linear code; Rain; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.796403
Filename :
796403
Link To Document :
بازگشت