DocumentCode :
1254327
Title :
Upper bound for uniquely decodable codes in a binary input N-user adder channel
Author :
Bross, Shraga I. ; Blake, Ian F.
Author_Institution :
Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont., Canada
Volume :
44
Issue :
1
fYear :
1998
fDate :
1/1/1998 12:00:00 AM
Firstpage :
334
Lastpage :
340
Abstract :
The binary input N-user adder channel models a communication media accessed simultaneously by N users. Each user transmits a binary codeword of length n chosen from its codebook and the channel output consists of a componentwise arithmetic sum of the binary digits. Van Tilborg (1978) gave an upper bound on the size of a uniquely decodable code for the two-user case. His work is generalized here to the N-user case. The results give interesting information on the existence and properties of such codes
Keywords :
binary sequences; decoding; telecommunication channels; binary codeword; binary digits; binary input N-user adder channel; channel output; code length; code properties; codebook; communication media; componentwise arithmetic sum; uniquely decodable code size; upper bound; Decoding; Geometry; Labeling; Orbits; Software; Steiner trees; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.651062
Filename :
651062
Link To Document :
بازگشت