DocumentCode :
1255118
Title :
Expanding Gaussian kernels for multivariate conditional density estimation
Author :
Davis, Daniel T. ; Hwang, Jenq-Neng
Author_Institution :
Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA
Volume :
46
Issue :
1
fYear :
1998
fDate :
1/1/1998 12:00:00 AM
Firstpage :
269
Lastpage :
275
Abstract :
We demonstrate fundamental problems with the standard use of Gaussian kernels (SGKs) for estimating f(m|x) from sparse training data (xi,mi). We develop a new method that overcomes these considerations using Gaussian kernels with expanding covariances (EGKs) combined through Bayesian analysis. In addition, we demonstrate that for a synthetic problem, EGKs perform better qualitatively and quantitatively with respect to the Kullback-Leibler criteria
Keywords :
Bayes methods; Gaussian processes; covariance analysis; estimation theory; signal processing; Bayesian analysis; expanding Gaussian kernels; expanding covariances; multivariate conditional density estimation; sparse training data; standard use of Gaussian kernels; synthetic problem; Atmospheric measurements; Atmospheric modeling; Bayesian methods; Geophysical measurements; Kernel; Moisture measurement; Satellites; Soil measurements; Standards organizations; Training data;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.651234
Filename :
651234
Link To Document :
بازگشت