DocumentCode :
1256785
Title :
Alphabetic codes revisited
Author :
Yeung, Raymond W.
Author_Institution :
AT&T Bell Lab., Holmdel, NJ, USA
Volume :
37
Issue :
3
fYear :
1991
fDate :
5/1/1991 12:00:00 AM
Firstpage :
564
Lastpage :
572
Abstract :
An alphabetic code for an ordered probability distribution (Pk) is a prefix code in which Pk is assigned to the kth codeword of the coding tree in left-to-right order. This class of codes is applied to binary test problems. Several earlier results on alphabetic codes are unified and enhanced. The characteristic inequality for alphabetic codes that is analogous to the Kraft inequality for prefix codes is also derived. It is shown that if (Pk) is in ascending or descending order, Lmin, the expected length of an optimal alphabetic code, is the same as that of a Huffman code for the unordered distribution (Pk). An enhancement of Gilbert and Moore´s (1959) merging property of all optimal alphabetic code is proved. Two lower bounds and a new upper bound on the expected length of an optimal alphabetic code are also proven, and a simple method is proposed for constructing good alphabetic codes when optimality is critical.
Keywords :
encoding; error correction codes; probability; Huffman code; Kraft inequality; alphabetic code; binary test problems; characteristic inequality; coding tree; lower bounds; merging property; optimal code length; ordered probability distribution; prefix code; upper bound; Fault diagnosis; Information theory; Joining processes; Merging; Performance evaluation; Probability distribution; Random variables; Sequential analysis; System testing; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.79913
Filename :
79913
Link To Document :
بازگشت