DocumentCode :
1256857
Title :
Improved block truncation coding using Hopfield neural network
Author :
Qiu, Guoping ; Varley, M.R. ; Terrell, T.J.
Author_Institution :
Dept. of Comput. & Electron., Lancashire Polytech., Preston, UK
Volume :
27
Issue :
21
fYear :
1991
Firstpage :
1924
Lastpage :
1926
Abstract :
Block truncation coding (BTC), a recent technique used in the coding of image data, is based on the classification of pixels within a small image block into two classes. A new technique is introduced which uses a Hopfield neural network to define the pixel classes. Results are presented for four monochrome still images. The new algorithm is shown to provide improved performance when compared to the two previous BT algorithms.
Keywords :
data compression; encoding; neural nets; picture processing; Hopfield neural network; algorithm; block truncation coding; image data coding; monochrome still images; pixel classification;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19911195
Filename :
98851
Link To Document :
بازگشت