DocumentCode :
1257257
Title :
Power Management of MIMO Network Interfaces on Mobile Systems
Author :
Yu, Hang ; Zhong, Lin ; Sabharwal, Ashutosh
Author_Institution :
Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA
Volume :
20
Issue :
7
fYear :
2012
fDate :
7/1/2012 12:00:00 AM
Firstpage :
1175
Lastpage :
1186
Abstract :
High-speed wireless network interfaces are among the most power-hungry components on mobile systems. This is particularly true for multiple-input-multiple-output (MIMO) network interfaces which use multiple RF chains simultaneously. In this paper, we present a novel power management solution for MIMO network interfaces on mobile systems, called antenna management. The key idea is to adaptively disable a subset of antennas and their RF chains to reduce circuit power consumption, when the capacity improvement of using a large number of antennas is small. Antenna management judiciously determines the number of active antennas to minimize energy per bit while satisfying the data rate requirement. This work provides both theoretical framework and system design of antenna management. We first present an algorithm that efficiently solves the problem of minimizing energy per bit and, then offer its 802.11n-compliant system designs. We employ both Matlab-based simulation and prototype-based experiment to validate the energy efficiency benefit of antenna management. The results show that antenna management can achieve 21% one-end energy per bit reduction to the front end of the MIMO network interface, compared to a static MIMO configuration that keeps all antennas active.
Keywords :
MIMO communication; active antennas; mobile radio; network interfaces; 802.11n-compliant system design; MIMO network interface; Matlab-based simulation; RF chains; active antenna; antenna management; capacity improvement; circuit power consumption; data rate requirement; energy efficiency; high-speed wireless network interface; mobile system; multiple-input-multiple-output network interface; power management; power-hungry component; prototype-based experiment; static MIMO configuration; MIMO; Mobile communication; Power demand; Radio frequency; Transmitting antennas; Antenna management; energy per bit; multiple-input-multiple-output (MIMO) network interface; power management;
fLanguage :
English
Journal_Title :
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-8210
Type :
jour
DOI :
10.1109/TVLSI.2011.2157369
Filename :
5929501
Link To Document :
بازگشت