DocumentCode :
1257650
Title :
An Experimental Paradigm to Assess Postural Stabilization: No More Movement and Not Yet Posture
Author :
Rabuffetti, Marco ; Bovi, Gabriele ; Quadri, Pier Luigi ; Cattaneo, Davide ; Benvenuti, Francesco ; Ferrarin, Maurizio
Author_Institution :
Polo Tecnol., Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
Volume :
19
Issue :
4
fYear :
2011
Firstpage :
420
Lastpage :
426
Abstract :
A ground reaction based method is proposed to evaluate the hypothesis that a stabilization phase occurs in transitions towards erect posture, following the macroscopic movement and preceding the quiet final erect posture, whose aim is to control and dissipate the residual inertial unbalancing forces occurring at the transition end. The experimental protocol considers three tasks leading to the final erect posture: taking a step forward (F), sit-to-stand (S), and bending the trunk forward (B), The method mainly consists of the fitting of a negative exponential function on the instability time profile following the end of the transition movement. The model parameters Y0, T, and Yinf, respectively, quantify the initial instability rate, a time duration related to the stabilization, and the final asymptotic instability rate. Results from a sample of 40 adult able bodied subjects demonstrated that a postural stabilization phase actually occurs: Yinf is smaller (0.010, 0.010, and 0.008 m/s2 for, respectively, F, S, and B tasks) than Y0 (0.081, 0.137, and 0.057 m/s2). Tis in the order of seconds (0.95, 0.51, and 1.00 s). No trial with large values of both Y0 and T was observed, evidencing that large initial instability rates are quickly controlled and reduced. The Y0 and T parameters distribution are discussed according to the possible underlying active and/or passive stabilization mechanisms. The test-retest reliability overall figure (mean ICC 0.45 for 12 indexes) increased, when dropping the indexes related to the less reliable B task, to values (mean ICC 0.56 for eight indexes) comparable to published posturographic data.
Keywords :
biomechanics; biomedical measurement; motion measurement; stability; active stabilisation mechanism; erect posture transitions; ground reaction based method; instability time profile; macroscopic movement; negative exponential function fitting; passive stabilisation mechanism; postural stabilisation assessment; quiet final erect posture; residual inertial unbalancing force control; residual inertial unbalancing force dissipation; sit to stand task; stabilisation phase; step forward task; trunk forward bending task; Force; Indexes; Mathematical model; Oscillators; Protocols; Reliability; Steady-state; Fall risk; ground reaction; human movement; motor control; posture; Accidental Falls; Activities of Daily Living; Adolescent; Adult; Aged; Biomechanics; Body Weight; Data Interpretation, Statistical; Female; Humans; Locomotion; Male; Middle Aged; Models, Statistical; Movement; Postural Balance; Posture; Reproducibility of Results; Young Adult;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/TNSRE.2011.2159241
Filename :
5929566
Link To Document :
بازگشت