Title :
Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization
Author :
Holzlöhner, Ronald ; Grigoryan, V.S. ; Menyuk, C.R. ; Kath, W.L.
Author_Institution :
Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD, USA
fDate :
3/1/2002 12:00:00 AM
Abstract :
We present a novel linearization method to calculate accurate eye diagrams and bit error rates (BERs) for arbitrary optical transmission systems and apply it to a dispersion-managed soliton (DMS) system. In this approach, we calculate the full nonlinear evolution using Monte Carlo methods. However, we analyze the data at the receiver assuming that the nonlinear interaction of the noise with itself in an appropriate basis set is negligible during transmission. Noise-noise beating due to the quadratic nonlinearity in the receiver is kept. We apply this approach to a highly nonlinear DMS system, which is a stringent test of our approach. In this case, we cannot simply use a Fourier basis to linearize, but we must first separate the phase and timing jitters. Once that is done, the remaining Fourier amplitudes of the noise obey a multivariate Gaussian distribution, the timing jitter is Gaussian distributed, and the phase jitter obeys a Jacobi-Θ distribution, which is the periodic analogue of a Gaussian distribution. We have carefully validated the linearization assumption through extensive Monte Carlo simulations. Once the effect of timing jitter is restored at the receiver, we calculate complete eye diagrams and the probability density functions for the marks and spaces. This new method is far more accurate than the currently accepted approach of simply fitting Gaussian curves to the distributions of the marks and spaces. In addition, we present a deterministic solution alternative to the Monte Carlo method
Keywords :
Gaussian distribution; Monte Carlo methods; error statistics; jitter; optical fibre communication; optical fibre dispersion; optical noise; optical receivers; optical solitons; timing jitter; Fourier amplitudes; Gaussian distribution; Jacobi-distribution; Monte Carlo methods; accurate calculation; basis set; bit error rates; deterministic solution; dispersion-managed soliton system; eye diagrams; full nonlinear evolution; highly nonlinear DMS system; linearization; marks; multivariate Gaussian distribution; noise; noise-noise beating; nonlinear interaction; optical transmission systems; phase jitter; probability density functions; quadratic nonlinearity; receiver; spaces; timing jitter; Bit error rate; Data analysis; Gaussian distribution; Gaussian noise; Nonlinear optics; Optical noise; Optical receivers; Optical solitons; System testing; Timing jitter;
Journal_Title :
Lightwave Technology, Journal of