DocumentCode :
126184
Title :
Efficient characterization of stochastic electromagnetic fields using eigenvalue decomposition and principal component analysis methods
Author :
Asenov, Tatjana ; Russer, Johannes A. ; Russer, Peter
Author_Institution :
Inst. for Nanoelectron., Tech. Univ. Munchen, Munich, Germany
fYear :
2014
fDate :
16-23 Aug. 2014
Firstpage :
1
Lastpage :
4
Abstract :
Stochastic electromagnetic fields can be described by the correlation function of the field amplitudes in all pairs of space points. We show that the description of stochastic electromagnetic fields by correlation matrices can be simplified using the principal component analysis (PCA) for eigenvalue decomposition. In this paper, the principal component analysis and the eigenvalue decomposition approach are applied for decomposing and reducing the correlation matrix describing the correlations of the sampled field amplitudes. Subsequently conventional eigenvalue decomposition and the PCA approaches are compared.
Keywords :
eigenvalues and eigenfunctions; electromagnetic fields; principal component analysis; stochastic processes; PCA approaches; correlation function; correlation matrices; eigenvalue decomposition approach; field amplitudes; principal component analysis methods; space points; stochastic electromagnetic fields; Correlation; Eigenvalues and eigenfunctions; Electromagnetics; Matrix decomposition; Noise; Principal component analysis; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI
Conference_Location :
Beijing
Type :
conf
DOI :
10.1109/URSIGASS.2014.6929549
Filename :
6929549
Link To Document :
بازگشت