Title :
Nonlinear Estimation of Synchronous Machine Parameters Using Operating Data
Author :
Valverde, Gustavo ; Kyriakides, Elias ; Heydt, Gerald T. ; Terzija, Vladimir
Author_Institution :
Univ. of Manchester, Manchester, UK
Abstract :
This paper presents a nonlinear parameter estimator for synchronous machines based on the unscented Kalman filter. The proposed methodology uses voltages and current signals recorded from the stator and the field winding to update the parameters of the classical model of the synchronous machine for stability studies. The methodology can be applied without interrupting the normal operation of the generator. Park´s Transformation is included in the estimation process to relate the stator measurements (in abc components) to the nonlinear voltage equations in the qd0 reference frame. The proposed robust methodology has been validated using real and simulated data to estimate the model parameters of a 483-MVA round rotor machine.
Keywords :
Kalman filters; nonlinear estimation; parameter estimation; stators; synchronous machines; Park transformation; apparent power 483 MVA; classical model; current signal; field winding; nonlinear parameter estimator; nonlinear voltage equation; rotor machine; stator measurement; stator winding; synchronous machine parameter; unscented Kalman filter; voltage signal; Covariance matrix; Estimation; Mathematical model; Rotors; Stator windings; Synchronous machines; Windings; Generator modeling; parameter estimation; synchronous machines; unscented Kalman filter (UKF);
Journal_Title :
Energy Conversion, IEEE Transactions on
DOI :
10.1109/TEC.2011.2141136