DocumentCode :
1265298
Title :
Asymptotic convergence from Lp stability
Author :
Teel, Andrew R.
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
Volume :
44
Issue :
11
fYear :
1999
fDate :
11/1/1999 12:00:00 AM
Firstpage :
2169
Lastpage :
2170
Abstract :
This note recalls that an absolutely continuous function having a uniformly locally integrable (not necessarily essentially bounded) derivative is uniformly continuous on the semi-infinite interval. This observation, in conjunction with Barbalat´s lemma, allows concluding asymptotic convergence to zero of an output function for a general class of nonlinear systems with Lp (not necessarily L) disturbances
Keywords :
asymptotic stability; convergence; nonlinear control systems; Barbalat lemma; L disturbances; Lp disturbances; Lp stability; absolutely continuous function; asymptotic convergence; nonlinear systems; semi-infinite interval; uniformly locally integrable derivative; Asymptotic stability; Automatic control; Convergence; Differential equations; Filters; Optimal control; Process control; Random processes; Stochastic processes; Systems engineering and theory;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.802938
Filename :
802938
Link To Document :
بازگشت