DocumentCode :
1266170
Title :
NMDS codes of maximal length over Fq,8⩽q⩽11
Author :
Marcugini, Stefano ; Milani, Alfredo ; Pambianco, Fernanda
Author_Institution :
Dept. of Math. & Informatics, Perugia Univ., Italy
Volume :
48
Issue :
4
fYear :
2002
fDate :
4/1/2002 12:00:00 AM
Firstpage :
963
Lastpage :
966
Abstract :
A linear [n,k,d]q code C is called near maximum-distance separable (NMDS) if d(C)=n-k and d(C)=k. The maximum length of an NMDS [n,k,d]q code is denoted by m´(k,q). In this correspondence, it has been verified by a computer-based proof that m´(5,8)=15, m´(4,9)=16,m´(5,9)=16, and 20⩽m´(4,11)⩽21. Moreover, the NMDS codes of length m´(4,8), m´(5,8), and m´(4,9) have been classified. As the dual code of an NMDS code is NMDS, the values of m´(k,8), k=10,11,12, and of m´(k,9),k=12,13,14 have been also deduced
Keywords :
dual codes; linear codes; Galois fields; NMDS codes; computer-based proof; dual code; linear code; maximum length; near maximum-distance separable codes; Galois fields; Hamming distance; Informatics; Linear code; Mathematics; Parity check codes; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.992802
Filename :
992802
Link To Document :
بازگشت