DocumentCode
1267179
Title
Tapered-Vth Approach for Energy-Efficient CMOS Buffers
Author
Frustaci, Fabio ; Alioto, Massimo ; Corsonello, Pasquale
Author_Institution
DEIS (Dipt. di Elettron., Inf. e Sist.), Univ. della Calabria, Rende, Italy
Volume
58
Issue
11
fYear
2011
Firstpage
2698
Lastpage
2707
Abstract
In this paper, “tapered-Vth” buffers are explored as an approach to significantly improve the energy efficiency of traditional CMOS buffers. In this approach, the transistor threshold voltage is progressively increased throughout the buffer stages, in addition to the traditional transistor tapered sizing. Analysis shows that tapered-Vth buffers are able to significantly widen the range of energy-delay trade-offs achievable in real designs, thereby showing improved design flexibility compared to single-Vth buffers. In addition, tapered-Vth buffers are shown to offer an up to 3× energy reduction under a given performance constraint. A circuit-level optimization procedure including the leakage energy contribution is adopted to explore the entire energy-delay space, in contrast to previous analyses that targeted only a specific point. To this aim, an analytical framework to express the energy-delay trade-off of CMOS buffers is presented, based on the Logical Effort methodology. Simulations in a 45-nm CMOS technology are extensively performed to validate the approach in a case study (Word Lines buffers for memory arrays) and in a number of other design cases. Extensive simulations are performed to understand the limits of the proposed approach, as well as the impact of the activity rate, the supply voltage, and process variations.
Keywords
CMOS memory circuits; buffer storage; CMOS buffers; activity rate; energy efficiency; energy-delay trade-offs; leakage energy contribution; logical effort methodology; memory arrays; process variations; size 45 nm; supply voltage; tapered-Vth buffers; transistor tapered sizing; transistor threshold voltage; word lines buffers; CMOS integrated circuits; Capacitance; Delay; Inverters; Optimization; Threshold voltage; Transistors; CMOS buffers; VLSI; digital circuits; energy efficient; low leakage; low power;
fLanguage
English
Journal_Title
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher
ieee
ISSN
1549-8328
Type
jour
DOI
10.1109/TCSI.2011.2157740
Filename
5944993
Link To Document