Title :
Controllable Metamaterial-Loaded Waveguides Supporting Backward and Forward Waves
Author :
Meng, Fan-Yi ; Wu, Qun ; Erni, Daniel ; Li, Le-Wei
Author_Institution :
Dept. of Microwave Eng., Harbin Inst. of Technol., Harbin, China
Abstract :
Rectangular waveguides loaded by anisotropic metamaterials are analyzed to assess the controllability of transmission characteristics of the involved electromagnetic waves. Dispersion relations of TEm0 modes in the metamaterial-loaded waveguide (MLW) are theoretically investigated. It is shown that all propagating modes (the forward wave, the backward wave and the evanescent wave) in the MLW can be realized below the cut-off frequency by changing transverse and longitudinal components of permeability tensors of the loading metamaterials. Numerical simulations are carried out to verify the proposed theory and the controllability. Transmission characteristics and effective constitutive parameters of three MLWs with different cells, which should theoretically support forward waves, backward waves and evanescent waves, respectively, are numerically calculated. Dispersion curves and magnetic field distribution for the backward wave MLW and the forward wave MLW are simulated. It is shown that the simulated results are in a good agreement with theoretical predictions. Implementation of the controllable MLW was achieved by using axially rotating control rods. Rotating the control rods can reconfigure the metamaterial and make propagating modes in the MLW switch from backward waves to forward waves or evanescent waves.
Keywords :
magnetic fields; metamaterials; rectangular waveguides; anisotropic metamaterials; backward waves; controllable metamaterial-loaded waveguides; dispersion curves; dispersion relations; evanescent wave; forward waves; magnetic field distribution; propagating modes; rectangular waveguides; transmission characteristics; Dispersion; Magnetic materials; Metamaterials; Optical losses; Permeability; Rectangular waveguides; Backward wave; controllability; evanescent wave; forward wave; metamaterial-loaded waveguide;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2011.2161540