Title :
Hybrid adaptive fuzzy identification and control of nonlinear systems
Author :
Hojati, Mehrdad ; Gazor, Saeed
Author_Institution :
Dept. of Electr. & Comput. Eng., Isfahan Univ. of Technol., Iran
fDate :
4/1/2002 12:00:00 AM
Abstract :
We present a combined direct and indirect adaptive control scheme for adjusting an adaptive fuzzy controller, and adaptive fuzzy identification model parameters. First, using adaptive fuzzy building blocks, with a common set of parameters, we design and study an adaptive controller and an adaptive identification model that have been proposed for a general class of uncertain structure nonlinear dynamic systems. We then propose a hybrid adaptive (HA) law for adjusting the parameters. The HA law utilizes two types of errors in the adaptive system, the tracking error and the modeling error. Performance analysis using a Lyapunov synthesis approach proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence. Furthermore, this is achieved at negligible increased implementation cost or computational complexity. We prove a theorem that shows the properties of this hybrid adaptive fuzzy control system, i.e., bounds for the integral of the squared errors, and the conditions under which these errors converge asymptotically to zero are obtained. Finally, we apply the hybrid adaptive fuzzy controller to control a chaotic system, and the inverted pendulum system
Keywords :
Lyapunov methods; adaptive control; chaos; control system synthesis; fuzzy control; identification; nonlinear control systems; self-adjusting systems; Lyapunov synthesis approach; adaptive fuzzy building blocks; adaptive fuzzy controller; adaptive fuzzy identification model parameters; chaotic system control; direct adaptive control scheme; hybrid adaptive fuzzy control system; hybrid adaptive fuzzy identification; indirect adaptive control scheme; inverted pendulum system; modeling error; nonlinear system control; parameter convergence; performance analysis; self-tuning controller; squared error integral bounds; tracking error; uncertain structure nonlinear dynamic systems; Adaptive control; Adaptive systems; Control systems; Error correction; Fuzzy control; Fuzzy sets; Fuzzy systems; Nonlinear control systems; Nonlinear dynamical systems; Programmable control;
Journal_Title :
Fuzzy Systems, IEEE Transactions on