Title :
WAM—The Weighted Average Method for Predicting the Performance of Systems with Bursts of Customer Sessions
Author :
Krishnamurthy, Dheepak ; Rolia, Jerry ; Min Xu
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB, Canada
Abstract :
Predictive performance models are important tools that support system sizing, capacity planning, and systems management exercises. We introduce the Weighted Average Method (WAM) to improve the accuracy of analytic predictive performance models for systems with bursts of concurrent customers. WAM considers the customer population distribution at a system to reflect the impact of bursts. The WAM approach is robust with respect to distribution functions, including heavy-tail-like distributions, for workload parameters. We demonstrate the effectiveness of WAM using a case study involving a multitier TPC-W benchmark system. To demonstrate the utility of WAM with multiple performance modeling approaches, we developed both Queuing Network Models and Layered Queuing Models for the system. Results indicate that WAM improves prediction accuracy for bursty workloads for QNMs and LQMs by 10 and 12 percent, respectively, with respect to a Markov Chain approach reported in the literature.
Keywords :
Markov processes; queueing theory; software performance evaluation; systems analysis; Markov chain approach; analytic predictive performance models; bursty workloads; capacity planning; customer session bursts; heavy tail like distributions; layered queuing models; multitier TPC-W benchmark system; queuing network models; system performance prediction; system sizing; systems management exercises; weighted average method; Accuracy; Analytical models; Markov processes; Predictive models; Queueing analysis; Software; Time factors; Performance of systems; modeling techniques; operational analysis.; queuing theory;
Journal_Title :
Software Engineering, IEEE Transactions on
DOI :
10.1109/TSE.2011.65