Title :
Pitch detection with a neural-net classifier
Author :
Barnard, Etienne ; Cole, Ronald A. ; Vea, Mathew P. ; Alleva, Fileno A.
Author_Institution :
Dept. of Electron. & Comput. Eng., Pretoria Univ., South Africa
fDate :
2/1/1991 12:00:00 AM
Abstract :
Pitch detection based on neural-net classifiers is investigated. To this end, the extent of generalization attainable with neural nets is examined, and the choice of features is discussed. For pitch detection, two feature sets, one based on waveform samples and the other based on properties of waveform peaks, are introduced. Experiments with neural classifiers demonstrate that the latter feature set, which has better invariance properties, performs more successfully. It is found that the best neural-net pitch tracker approaches the level of agreement of human labellers on the same data set, and performs competitively in comparison to a sophisticated feature-based tracker. An analysis of the errors committed by the neural net (relative to the hand labels used for training) reveals that they are mostly due to inconsistent hand labeling of ambiguous waveform peaks
Keywords :
neural nets; speech recognition; ambiguous waveform peaks; data set; error analysis; feature set; human labellers; invariance properties; neural classifiers; neural-net classifier; pitch detection; pitch tracker; speech recognition; waveform samples; Associate members; Computer science; Computer vision; Error analysis; Frequency; Humans; Labeling; Neural networks; Speech processing; Speech recognition;
Journal_Title :
Signal Processing, IEEE Transactions on