Title :
Support-Vector-Based Hyperspectral Anomaly Detection Using Optimized Kernel Parameters
Author :
Gurram, Prudhvi ; Kwon, Heesung
Author_Institution :
U.S. Army Res. Lab., Adelphi, MD, USA
Abstract :
In this letter, a method to optimally determine the kernel bandwidth of the Gaussian radial basis function (RBF) kernel for support vector (SV)-based hyperspectral anomaly detection is presented. In this method, the support of a local background distribution is first nonparametrically learned by a technique called SV data description (SVDD). The SVDD optimally models an enclosing hypersphere around the local background data in a high-dimensional feature space associated with the Gaussian RBF kernel. Any test pixel that lies outside this hypersphere surrounding the local background is considered an anomaly and, hence, a possible target pixel. Considerable improvement in detection performance due to kernel parameter optimization can be seen in the simulation results when the algorithm is applied to hyperspectral images.
Keywords :
Gaussian processes; optimisation; radial basis function networks; support vector machines; Gaussian RBF kernel; Gaussian radial basis function kernel; SV data description; enclosing hypersphere; high-dimensional feature space; hyperspectral image; kernel bandwidth; kernel parameter optimization; optimized kernel parameters; support vector-based hyperspectral anomaly detection; Bandwidth; Hyperspectral imaging; Kernel; Niobium; Optimization; Pixel; Anomaly detection; kernel parameter optimization; support vector (SV) data description (SVDD);
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2011.2155030