Title :
A Hybrid Cellular Automaton Model of Solid Tumor Growth and Bioreductive Drug Transport
Author :
Kazmi, Nabila ; Hossain, Md Aynal ; Phillips, R.M.
Author_Institution :
Sch. of Comput., Eng. & Inf. Sci., Northumbria Univ., Newcastle upon Tyne, UK
Abstract :
Bioreductive drugs are a class of hypoxia selective drugs that are designed to eradicate the hypoxic fraction of solid tumors. Their activity depends upon a number of biological and pharmacological factors and we used a mathematical modeling approach to explore the dynamics of tumor growth, infusion, and penetration of the bioreductive drug Tirapazamine (TPZ). An in-silico model is implemented to calculate the tumor mass considering oxygen and glucose as key microenvironmental parameters. The next stage of the model integrated extra cellular matrix (ECM), cell-cell adhesion, and cell movement parameters as growth constraints. The tumor microenvironments strongly influenced tumor morphology and growth rates. Once the growth model was established, a hybrid model was developed to study drug dynamics inside the hypoxic regions of tumors. The model used 10, 50 and 100 μM as TPZ initial concentrations and determined TPZ pharmacokinetic (PK) (transport) and pharmacodynamics (cytotoxicity) properties inside hypoxic regions of solid tumor. The model results showed that diminished drug transport is a reason for TPZ failure and recommend the optimization of the drug transport properties in the emerging TPZ generations. The modeling approach used in this study is novel and can be a step to explore the behavioral dynamics of TPZ.
Keywords :
adhesion; biomechanics; cancer; cellular biophysics; drug delivery systems; drugs; organic compounds; physiological models; toxicology; tumours; TPZ failure; TPZ generations; TPZ pharmacokinetic properties; behavioral dynamics; biological factors; bioreductive drug tirapazamine penetration; bioreductive drug transport; cell movement parameters; cell-cell adhesion; cytotoxicity; drug dynamics; drug transport properties; glucose; growth model; hybrid cellular automaton model; hybrid model; hypoxia selective drugs; hypoxic fraction; hypoxic regions; in-silico model; infusion; mathematical modeling approach; microenvironmental parameters; model integrated extracellular matrix; optimization; pharmacodynamics properties; pharmacological factors; solid tumor growth; tumor mass considering oxygen; tumor microenvironments; tumor morphology; Biological system modeling; Computational modeling; Drugs; Electronic countermeasures; Mathematical model; Tumors; Extra cellular matrix; Hypoxia; mathematical modeling; microenvironment and Tirapazamine; Animals; Antineoplastic Agents; Biological Transport; Cell Growth Processes; Cell Hypoxia; Cell Survival; Computer Simulation; Humans; Models, Biological; Neoplasms; Neural Networks (Computer); Triazines; Tumor Microenvironment;
Journal_Title :
Computational Biology and Bioinformatics, IEEE/ACM Transactions on
DOI :
10.1109/TCBB.2012.118