Title :
A Switched System Approach to Exponential Stabilization Through Communication Network
Author :
Kruszewski, Alexandre ; Jiang, Wenjuan -J ; Fridman, Emilia ; Richard, Jean Pierre ; Toguyeni, Armand
Author_Institution :
LAGIS, Ecole Centrale de Lille, Villeneuve d Ascq, France
fDate :
7/1/2012 12:00:00 AM
Abstract :
This paper considers a networked control loop, where the plant is a “slave” part, and the remote controller and observer constitute the “master”. Since the performance of networked control systems (NCS) depends on the quality of service (QoS) available from the network, it is worth to design a controller that takes into account qualitative information on the QoS in realtime. The goal of the design is to provide a controller that guarantees the following two things: 1) high performances (here expressed by exponential decay rates) when the QoS remains globally the same and 2) global stability when the QoS changes. In order to guarantee the global stability, the controller will switch by respecting a dwell time constraint. The dwell time parameters are obtained by using the switched system theories and the obtained conditions are linear matrix inequalities. An experiment illustrates how the controller can be implemented for a control over Internet application (remote control of a small robot).
Keywords :
asymptotic stability; linear matrix inequalities; quality of service; telecommunication congestion control; Internet application; communication network; exponential stabilization; global stability; linear matrix inequalities; networked control loop; networked control system; qualitative information; quality of service; remote controller; small robot; switched system theory; time constraint; Delay; Observers; Quality of service; Stability analysis; Switched systems; Switches; Gain scheduling; Lyapunov-Krasovskii method; linear matrix inequality (LMI); networked control systems; time delay approach;
Journal_Title :
Control Systems Technology, IEEE Transactions on
DOI :
10.1109/TCST.2011.2159793