Title :
Effect of channel estimation error on M-QAM BER performance in Rayleigh fading
Author :
Tang, Xiaoyi ; Alouini, Mohamed-Slim ; Goldsmith, Andrea J.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
fDate :
12/1/1999 12:00:00 AM
Abstract :
We determine the bit-error rate (BER) of multilevel quadrature amplitude modulation (M-QAM) in flat Rayleigh fading with imperfect channel estimates, Despite its high spectral efficiency, M-QAM is not commonly used over fading channels because of the channel amplitude and phase variation. Since the decision regions of the demodulator depend on the channel fading, estimation error of the channel variation can severely degrade the demodulator performance. Among the various fading estimation techniques, pilot symbol assisted modulation (PSAM) proves to be an effective choice. We first characterize the distribution of the amplitude and phase estimates using PSAM. We then use this distribution to obtain the BER of M-QAM as a function of the PSAM and channel parameters. By using a change of variables, our exact BER expression has a particularly simple form that involves just a few finite-range integrals. This approach can be used to compute the BER for any value of M. We compute the BER for 16-QAM and 64-QAM numerically and verify our analytical results by computer simulation. We show that for these modulations, amplitude estimation error leads to a 1-dB degradation in average signal-to-noise ratio and combined amplitude-phase estimation error leads to 2.5-dB degradation for the parameters we consider
Keywords :
Rayleigh channels; amplitude estimation; demodulation; error statistics; phase estimation; quadrature amplitude modulation; 1 dB; 16-QAM; 2.5 dB; 64-QAM; BER; M-QAM BER performance; PSAM; Rayleigh fading; amplitude estimates; amplitude estimation error; bit-error rate; channel estimation error; channel variation; combined amplitude-phase estimation error; demodulator; finite-range integrals; imperfect channel estimates; multilevel quadrature amplitude modulation; phase estimates; pilot symbol assisted modulation; Amplitude estimation; Bit error rate; Channel estimation; Degradation; Demodulation; Estimation error; Fading; Phase estimation; Quadrature amplitude modulation; Rayleigh channels;
Journal_Title :
Communications, IEEE Transactions on