Title :
Unbiased blind adaptive channel identification and equalization
Author :
Gesbert, David ; Duhamel, Pierre
Author_Institution :
Gigabit Wireless Inc., Mountain View, CA, USA
fDate :
1/1/2000 12:00:00 AM
Abstract :
The blind adaptive equalization and identification of communication channels is a problem of important current theoretical and practical concerns. Previously proposed solutions for this problem exploit the diversity induced by sensor arrays or time oversampling, leading to the so-called second-order algebraic/statistical techniques. The prediction error method is one of them, perhaps the most appealing in practice, due to its inherent robustness to ill-defined channel lengths as well as for its simple adaptive implementation. Unfortunately, the performance of prediction error methods is known to be severely limited in noisy environments, which calls for the development of noise (bias) removal techniques. We present a low-cost algorithm that solves this problem and allows the adaptive estimation of unbiased linear predictors in additive noise with arbitrary autocorrelation. This algorithm does not require the knowledge of the noise variance and relies on a new constrained prediction cost function. The technique can be applied in other noisy prediction problems. Global convergence is established analytically. The performance of the denoising technique is evaluated over GSM test channels
Keywords :
adaptive equalisers; adaptive estimation; antenna arrays; array signal processing; cellular radio; identification; interference suppression; noise; prediction theory; radiofrequency interference; GSM test channels; adaptive estimation; additive noise; autocorrelation; communication channels; constrained prediction cost function; denoising technique; diversity; equalization; global convergence; ill-defined channel lengths; noise removal techniques; performance; prediction error method; prediction error methods; second-order algebraic/statistical techniques; sensor arrays; unbiased blind adaptive channel identification; unbiased linear predictors; Adaptive equalizers; Adaptive estimation; Additive noise; Autocorrelation; Blind equalizers; Communication channels; Cost function; Noise robustness; Sensor arrays; Working environment noise;
Journal_Title :
Signal Processing, IEEE Transactions on