DocumentCode :
1287315
Title :
Neural-net inference and content addressable memory
Author :
Mazza, Christian
Author_Institution :
Section de Math., Geneva, Switzerland
Volume :
8
Issue :
1
fYear :
1997
fDate :
1/1/1997 12:00:00 AM
Firstpage :
133
Lastpage :
140
Abstract :
We consider Whittle´s probabilistic content addressable memory, the antiphon, which is designed for recovering stored patterns from nonlinear distortions of the input messages. We give an application to content-based image retrieval systems and propose canonical ways of choosing similarity thresholds ensuring statistical consistency
Keywords :
content-addressable storage; inference mechanisms; neural nets; probability; antiphon; content-based image retrieval systems; neural-net inference; nonlinear distortions; probabilistic content-addressable memory; similarity thresholds; statistical consistency; Associative memory; Content based retrieval; Hebbian theory; Hopfield neural networks; Hypercubes; Image retrieval; Maximum likelihood decoding; Neural networks; Quantum computing; Testing;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.554197
Filename :
554197
Link To Document :
بازگشت