DocumentCode :
1288819
Title :
A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation
Author :
Li, Ye ; Liu, K. J Ray ; Razavilar, Javad
Author_Institution :
Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA
Volume :
45
Issue :
2
fYear :
1997
fDate :
2/1/1997 12:00:00 AM
Firstpage :
481
Lastpage :
486
Abstract :
Most of the existing algorithms for parameter estimation of damped sinusoidal signals are based only on the low-rank approximation of the prediction matrix and ignore the Hankel property of the prediction matrix. We propose a modified Kumaresan-Tufts (MKT) algorithm exploiting both rank-deficient and Hankel properties of the prediction matrix. Computer simulation results demonstrate that compared with the original Kumaresan-Tufts (1982) algorithm and the matrix pencil algorithm, the MKT algorithm has a lower noise threshold and can estimate the parameters of signal with larger damping factors
Keywords :
Hankel matrices; approximation theory; damping; noise; parameter estimation; signal processing; Hankel properties; computer simulation results; damped sinusoidal signals; damping factors; low rank Hankel approximation; matrix pencil algorithm; modified Kumaresan-Tufts algorithm; noise threshold; parameter estimation; prediction matrix; reduced-rank matrix approximation; signal processing; Additive noise; Approximation algorithms; Computer simulation; Damping; Java; Least squares approximation; Matrix decomposition; Parameter estimation; Signal processing algorithms; Signal to noise ratio;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.554314
Filename :
554314
Link To Document :
بازگشت