Title :
Application-Support Particle Filter for Dynamic Voltage Scaling of Multimedia Applications
Author :
Lee, Jae-Beom ; Kim, Myoung-Jin ; Yoon, Sungroh ; Chung, Eui-Young
Author_Institution :
Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea
Abstract :
Dynamic Voltage and Frequency Scaling (DVFS) is an effective low-power technique for real-time workloads. Its effectiveness critically depends on the accurate prediction of the task execution time. Many DVFS approaches have been proposed, but they are insufficient for highly nonstationary workloads. Several recent DVFS techniques adopted adaptive filters to improve accuracy. However, their improvement was rather limited, since they mainly focused on applying a filter framework to the target application without tuning it. We address this issue by proposing Particle Filter (PF)-based video decoders (MPEG2 and H.264) which exploit application-specific characteristics. More specifically, our PF-based video decoders utilize the size of each frame for the prediction of its decoding time. Compared to previous work, the PF is more suitable for our purpose, since it achieves higher prediction accuracy, even for highly nonstationary workloads such as H.264 clips. Our results show that the energy saved by the proposed approach is comparable to that of the ideal policy called oracle-DVFS, while the existing methods we tested were far inferior to oracle-DVFS in terms of H.264 video decoding. Additionally, when our method was used, only 0.40 and 6.88 percent of the frames missed their deadlines with negligible computational overhead for MPEG and H.264, respectively.
Keywords :
Monte Carlo methods; decoding; low-power electronics; multimedia computing; particle filtering (numerical methods); power aware computing; video coding; DVFS technique; H.264 clips; H.264 video decoding; MPEG2; PF-based video decoder; application-specific characteristics; application-support particle filter; decoding time; dynamic voltage and frequency scaling; filter framework; low-power technique; multimedia application; nonstationary workload; oracle-DVFS; real-time workload; sequential Monte Carlo; task execution time; Accuracy; Decoding; Estimation; Multimedia communication; Real time systems; Streaming media; Transform coding; Dynamic voltage and frequency scaling; feedback control; low energy; nonstationarity.; particle filter; sequential Monte Carlo;
Journal_Title :
Computers, IEEE Transactions on
DOI :
10.1109/TC.2011.148