Title :
92% High Efficiency and Low Current Mismatch Interleaving Power Factor Correction Controller With Variable Sampling Slope and Automatic Loading Detection Techniques
Author :
Yi-Ping Su ; Chun-Yen Chen ; Chia-Lung Ni ; Yu-Chai Kang ; Yi-Ting Chen ; Jen-Chieh Tsai ; Ke-Horng Chen ; Shih-Ming Wang ; Chao-Chiun Liang ; Chang-An Ho ; Tun-Hao Yu
Author_Institution :
Inst. of Electr. & Comput. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
Abstract :
This paper proposes the dual nondeadtime variable sampling slope technique to carry out precise phase sensing and suppress phase error in interleaving power factor correction (PFC) controller over a whole ac switching cycle for low current mismatch. Furthermore, the proposed automatic loading detection (ALD) technique can keep efficiency higher than 92% over a wide load range due to accurately controlling the ON/OFF of dual phases. The test circuit fabricated in the TSMC 0.5-μm 800-V UHV process shows that the highly integrated interleaving PFC can deliver a high power of 180 W and a high efficiency of 95% at an output power of 180 W.
Keywords :
power control; power factor; PFC controller; UHV process; automatic loading detection techniques; dual nondeadtime variable sampling slope technique; dual phases; high efficiency mismatch interleaving power factor correction controller; highly integrated interleaving PFC; low current mismatch interleaving power factor correction controller; power 180 W; proposed automatic loading detection technique; variable sampling slope; Inductors; Loading; Power factor correction; Power generation; Switches; Zero current switching; Automatic loading detection (ALD); dual nondeadtime variable sampling slope (DNVSS); interleaving power factor correction (PFC);
Journal_Title :
Power Electronics, IEEE Transactions on
DOI :
10.1109/TPEL.2013.2240395