DocumentCode :
1299708
Title :
On-line retrainable neural networks: improving the performance of neural networks in image analysis problems
Author :
Doulamis, Anastasios D. ; Doulamis, Nikolaos D. ; Kollias, Stefanos D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Greece
Volume :
11
Issue :
1
fYear :
2000
fDate :
1/1/2000 12:00:00 AM
Firstpage :
137
Lastpage :
155
Abstract :
A novel approach is presented in this paper for improving the performance of neural-network classifiers in image recognition, segmentation, or coding applications, based on a retraining procedure at the user level. The procedure includes: 1) a training algorithm for adapting the network weights to the current condition; 2) a maximum a posteriori (MAP) estimation procedure for optimally selecting the most representative data of the current environment as retraining data; and 3) a decision mechanism for determining when network retraining should be activated. The training algorithm takes into consideration both the former and the current network knowledge in order to achieve good generalization. The MAP estimation procedure models the network output as a Markov random field (MRF) and optimally selects the set of training inputs and corresponding desired outputs. Results are presented which illustrate the theoretical developments as well as the performance of the proposed approach in real-life experiments
Keywords :
image coding; image recognition; image segmentation; neural nets; performance evaluation; Markov random field; decision mechanism; image analysis problems; image coding; image recognition; image segmentation; maximum a posteriori estimation; neural networks; online retrainable neural networks; performance; Artificial neural networks; Image analysis; Image recognition; Image segmentation; Intelligent networks; MPEG 4 Standard; Neural networks; Probability distribution; Testing; Video coding;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.822517
Filename :
822517
Link To Document :
بازگشت