DocumentCode :
1300216
Title :
Simplified procedure for correcting both errors and erasures of Reed-Solomon code using Euclidean algorithm
Author :
Truong, T.K. ; Hsu, I.S. ; Eastman, W.L. ; Reed, I.S.
Author_Institution :
Commun. Syst. Res. Section, Jet Propulsion Lab., Pasadena, CA, USA
Volume :
135
Issue :
6
fYear :
1988
fDate :
11/1/1988 12:00:00 AM
Firstpage :
318
Lastpage :
324
Abstract :
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp´s key equation that is needed to decode a Reed-Solomon (RS) code. In the paper, a simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained simultaneously and simply, by the Euclidean algorithm only. With this improved technique, the complexity of time-domain Reed-Solomon decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.
Keywords :
decoding; error correction codes; Euclidean algorithm; Reed-Solomon code; VLSI; continued fractions; error correction; error evaluator polynomial; error locator polynomial; software implementation;
fLanguage :
English
Journal_Title :
Computers and Digital Techniques, IEE Proceedings E
Publisher :
iet
ISSN :
0143-7062
Type :
jour
Filename :
6547
Link To Document :
بازگشت