Title :
Barrier-Engineered Arsenide–Antimonide Heterojunction Tunnel FETs With Enhanced Drive Current
Author :
Mohata, D. ; Rajamohanan, B. ; Mayer, T. ; Hudait, M. ; Fastenau, J. ; Lubyshev, D. ; Liu, A.W.K. ; Datta, S.
Author_Institution :
Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA
Abstract :
In this letter, we experimentally demonstrate enhancement in drive current ION and reduction in drain-induced barrier thinning (DIBT) in arsenide-antimonide staggered-gap heterojunction (hetj) tunnel field-effect transistors (TFETs) by engineering the effective tunneling barrier height Ebeff from 0.58 to 0.25 eV. Moderate-stagger GaAs0.4Sb0.6/In0.65 Ga0.35As (Ebeff = 0.31 eV) and high-stagger GaAs0.35Sb0.65/In0.7Ga0.3As (Ebeff = 0.25 eV) hetj TFETs are fabricated, and their electrical results are compared with the In0.7Ga0.3As homojunction (homj) TFET (Ebeff = 0.58 eV). Due to the 57% reduction in Ebeff, the GaAs0.35Sb0.65/In0.7Ga0.3As hetj TFET achieves 253% enhancement in ION over the In0.7Ga0.3As homj TFET at VDS = 0.5 V and VGS - VOFF = 1.5 V. With electrical oxide thickness (Toxe) scaling from 2.3 to 2 nm, the enhancement further increases to 350 %, resulting in a record high ION of 135 μA/μm and 65% reduction in DIBT at VDS = 0.5 V.
Keywords :
III-V semiconductors; antimony compounds; field effect transistors; gallium arsenide; indium compounds; tunnel transistors; DIBT reduction; GaAs0.35Sb0.65-In0.7Ga0.3As; GaAs0.4Sb0.6-In0.65Ga0.35As; arsenide-antimonide staggered-gap heterojunction; barrier-engineered arsenide-antimonide heterojunction TFET; drain-induced barrier thinning reduction; drive current enhancement; electrical oxide thickness scaling; electron volt energy 0.58 eV to 0.25 eV; homojunction TFET; size 2.3 nm to 2 nm; tunnel field-effect transistors; tunneling barrier height; voltage 0.5 V; voltage 1.5 V; FETs; Gallium compounds; Heterojunctions; Indium gallium arsenide; Transistors; Tunneling; GaAsSb; InGaAs; stagger; tunnel field-effect transistors (TFETs);
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2012.2213333